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 A B S T R A C T  

Aims:  This study aims to identify multi-omics bio-markers for insulin 
resistance and sensitivity using machine learning approaches on a 
dataset integrated from several omics.

Methods: The study included 362 patients with Insulin Resistance and 
Insulin Sensitivity from the Integrative Personal Omics Profiling (iPOP) 
database. Combining the multi-omics data from the Integrative Human 
Microbiome Project, this study used machine learning to reveal the 
relationship between insulin resistance and insulin sensitivity.

Results: Of  362 patients 186 were insulin resistance and 176 were insulin 
sensitivity. 11,585 features were used, including clinical features, RNA 
transcripts, gut microbiota, cytokines, proteins, and metabolomics. 
We found 21 features capable of distinguishing insulin resistance 
from insulin sensitivity using a well-known artificial neural network 
(ANN) method. The model had an area under the receiver operating 
characteristic (AUC) of 0.97 in the validation dataset and 0.89 in the test 
dataset. The ANN model’s performance was compared with Random 
Forest model. Of the 21 new findings, two metabolites (methyl-uric 
acid and methylxanthine) are xenobiotics, and three RNA transcripts 
(SERPINF1, SLC2A2, and CHL1).

Conclusion: A small number of multi-omics features identified from 
11,585 potential candidates for a machine learning model can accurately 
predict insulin resistance and sensitivity.

Keywords: microbiome, metabolomics, multi-omics,  type II diabetes 
mellitus, artificial neural network.
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INTRODUCTION

Type II diabetes mellitus (T2D) affects more than 
10% of the world population, and another 30% 
are diagnosed with prediabetes and are at risk of 
developing diabetes in the coming years [1, 2]. T2D 
is a complex disease; little is known about changes 
during the initial prediabetes stage, modifications 
in biological processes, or its alteration to T2D. 
Both conditions are connected with insulin 
resistance, which is used to investigate the earliest 
stages of diabetes. Innovations in next-generation 
sequencing (NGS) and mass spectrometry (MS) 
have made it possible to report novel bio-markers 
and pathways across several diseases, including 

T2D. Biological data created with NGS and MS 
experiments help more accurately predict health 
outcomes [3-5]. Massive cohort studies use data 
generated from NGS to identify genetic variants 
associated with complex diseases, such as genome-
wide association studies  (GWAS). GWAS-associated 
T2D has identified more than 300 genetic variants. 
However, using GWAS alone is not sufficient for a 
thorough understanding of complex diseases and 
their mechanisms as GWAS only focuses on genetic 
factors [6]. The past two decades have witnessed 
progress in the diversity of molecular data, 
including genomics, epigenomics, transcriptomics, 
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and proteomics. These multi-omics profiling 
approaches can be used to screen the change of 
molecules in diseases and examine the variation 
within the traits. To address these challenges and 
to study dynamic changes in hosts under several 
diseases, the Integrated Human Microbiome 
Project (iHMP) was established by The National 
Institutes of Health (NIH) [2]. Previous iHMP projects 
have mainly focused on the longitudinal analysis 
of prediabetes patients [7]. In the past decade, 
microbiota and metabolomics have become very 
popular for uncovering the associations related to 
health or disease conditions [8,9]. Several cohort 
studies try to create an atlas for biomarkers using 
association studies involving metabolite-wide 
association studies  (MeWAS) and microbiome-
wide association studies (MWAS) [4,10]. Prediabetes 
and T2D signature has also been studied at a single 
omic level using microbiome [11], metabolomics 
[12],  proteomics [13], epigenomics [14].  Overmyer 
et al. investigated associations between the oral 
microbiome and metabolomics in subjects with 
prediabetes [15]. These studies mainly focused on 
prediabetes patients, but the relationships among 
multi-omics elements in insulin resistance were 
not thoroughly studied. Machine learning is a 
promising tool for analysing multi-omics data and 
identifying bio-markers for disease risk ].

Additionally, the system biology field has been 
moving from only generating data to effectively 
analysing this high-dimensional data using many 
machine learning techniques [17-20]. These 
studies mostly try to predict metastasis or help 
clinicians effectively in cancer diagnosis, prognosis, 
and treatment selection [18,19]. However, high-
dimensional models with different multi-omics 
elements make it challenging to develop accurate 
models and lead to overfitting problems.  This study 
aims to identify potential biomarkers for insulin 
resistance (IR) and insulin sensitivity (IS) using 
machine learning. Combining data from multiple 
omics including laboratory features, gut microbiota, 
RNA transcripts, metabolomics, cytokines and 
proteins, we investigated 11,585 potential features 
for predicting IR and IS. We identified 21 potential 
biomarkers that can make accurate predictions of 
IS and IR using feature selection approaches.

METHODS

The iPOP Project omics data was used (http://hmp2-
data.stanford.edu/).  iHMP Type II Diabetes Mellitus 
Data were obtained from iPOP [21]. Each omics 
data is downloaded separately from the data portal 
and merged using the visiting ID of samples. Ethics 
approval is not needed, and the Declaration of 
Helsinki’s ethical rules and principles were followed 
in all procedures. We designed a cross-sectional 
study ignoring the longitudinal data of prediabetes 
patients. The samples were selected according to 
the steady-state plasma glucose level (SSPG) by 
iPOP. Individuals with an SSPG greater than 150 
mg/dL were logged as IR, and below the same 
threshold were logged as IS [2]. The data consisted 
of 186 individuals classified as IR and 176 as IS. In 
total, 11,585 features were used (302  proteins from 
plasma, 66 cytokines, 51 clinical laboratory features, 
96 gut microbiota, 10,346  RNA transcripts, and 724 
metabolomics) (Figure 1).

Features that have missing values were excluded 
and data was scaled with z-score normalisation. 
The data was analysed using two machine learning 
methods: artificial neural networks (ANN) and 
Random Forests. To develop a model for classifying 
IR and IS, subjects were divided randomly in an 8:2 
model training dataset to test-validation dataset 
ratio. The test-validation dataset was used only to 
verify the model performance and was randomly 
divided into a 5:5 ratio to obtain the test and 
validation datasets. A Multi-Layer Perceptron 
classifier from the scikit-learn library in Python 
programming language was used for ANN [22]. 
Model parameter optimisation was performed 
using Grid search, and the best parameters were 
selected for each model. All the predefined 
parameters are fitted with the Adaptive Movement 
Estimation (Adam) algorithm to adjust the 
learning rate dynamically, sigmoid for calculating 
predictions, and the remaining layers are activated 
with the Rectified Linear Unit (ReLU) function. The 
Sequential Feature Selector function was used with 
forward selection (Sequential Forward  Selection 
(SFS)) for feature selection. A Random Forest 
Classifier from the scikit-learn library in Python 
programming language was used for Random 
forest [22]. The gini function to measure the quality 
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of a split was selected. It ensures that each tree 
makes effective splits that contribute to accurate 
predictions when combined with others in the 
forest. The comparisons of ANN and Random Forest 
models were based on the area under the receiver 
operating characteristic (AUC) curve, accuracy, 
precision, recall and f1-score. AUC was plotted 
with ggroc function from ggplot library using R 
programming language [23]. The performance of 
the ANN algorithm model was compared with the 
Random Forest algorithm [24].  

RESULTS

The study consisted of 186 patients with IR and 
176 patients with IS. To develop a model capable 
of distinguishing IR from IS, subjects were divided 
randomly in an 8:2 model training to test-validation 
dataset ratio. We set the hidden_layer_size inside 
the Multi-Layer Perceptron Classifier to (6,6,6,6) in 
ANN model. This means we add four hidden layers 
with six hidden units in each, including the Adam 
algorithm, the ReLU function, and 500 iterations.  
The model resolved with 21 features with the 
forward selection function from 11,585 features 
from the data (Table 1). 

The first ANN models of IR and IS data were built 
using training sets. Then, the model was evaluated 
with validation and test datasets. The same data-
splitting procedure is applied to the Random Forest 
model. We set the n_estimators (number of trees in 

the forest) as “1000” in Random Forest Classifier. The 
function to measure the quality of a split is selected 
as “gini”.  The prediction performances of ANN 
model were also evaluated and compared with 
Random Forest model (Table 2).

Table 1. Selected 21 features with forward selection in 
the ANN algorithm model

Bio-marker Omic Total p-value

IGHM Proteomics 3 <0.001

APOE <0.001

LPA 0.01

LEPTIN Cytokines 6 0.007

SCF <0.001

GMCSF <0.001

MCP1 <0.001

FASL 0.014

IL7 <0.001

HDL Clinical 
Laboratory

6 0.006

Monoab 0.05

MCV <0.001

CR <0.001

TGL <0.001

EOTAXIN <0.001

genus_Coprococcus Gut Microbiota 1 0.015

methyluric acid Metabolomics 2 <0.001

methylxanthine <0.001

SERPINF1 Transcriptomics 3 <0.001

SLC2A2 <0.001

CHL1 0.05

Figure 1. Summary of the multi-omics study design
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Receiver operating characteristic (ROC) curve of 
the ANN and Random Forest models are plotted in 
Figure 2.

The AUC was 0.97 in the validation set and 0.89 
in the test dataset.  The accuracy, precision, recall 
and f1-score for the validation dataset are 0.91, 
0.95, 0.87, and 0.91, respectively.  The test dataset’s 
accuracy, precision, recall and f1-score are 0.89, 
0.89, 0.85, and 0.87, respectively. The Random 
Forest algorithm method was used to validate the 
ANN model. The AUC was 0.93 in the validation set 
and 0.94 in the test dataset. Of the 11,585 features, 
21 features were chosen in the final model. There 
were three proteins (IGHM, APOE, LPA), six cytokines 
(LEPTIN, SCF, GMCSF, MCP1, FASL, IL7) and six 
clinical laboratory features (HDL, Monoab, MCV, 
CR, TGL, EOTAXIN), one gut microbiota (genus_
Coprococcus), three RNA transcripts from RNAseq 
(SERPINF1, SLC2A2, and CHL1),  and two from 
metabolites  (methyl uric acid and methylxanthine. 
The 21 features for the final model are listed and 
can be found in Table 1.

DISCUSSION

Human transcriptomics, epigenomics, proteomics, 
metabolomics, and microbiome play an important 
role in health, and there is a strong indication 
that omics can be used as predictors of diseases. 
Arneth et. al. [12] conducted a meta-analysis on 
the metabolomics of Type I and Type II Diabetes 
mellitus, reporting several significant metabolites.  
Pinna et. al. [11] reported 16 operational taxonomic 
units (OTUs) enriched in almost 500 subjects with 
prediabetes. Huth et. al. [13] examined protein 
markers associated with T2D and prediabetes. 
Juvinao-Quintero et. al. [14] identified 77 
differentially methylated regions associated with 
T2D in a meta-analysis. Overmyer et. al.’s [15] multi-
omics study investigated the oral microbiome and 
metabolomics in (n = 97) subjects with prediabetes 
and found various associations. However, analyzing 
these omics causes challenges due to their high-
dimensional profiles with the help of feature 
selection, like the multi-dimensional datasets 
can be easily compressed into low-dimensional 
features. In our study, when the model was 
generated with selected features (21 features), the 
model performance was improved compared to 
the without feature selection. The ANN model could 
classify the samples as IR or IS with 21 features, but 
no single feature could do so. The ANN model was 
compared with the Random Forest model, both 
showing similar metric and performance results 
(AUC), with the Random Forest exhibiting slightly 
better performance, showcasing its robustness 
as a method. On the other hand, the Sequential 
Feature Selector function coupled with forward 
selection feature selection in ANN model enabled 
us to focus on specific key bio-markers which was 
the main focus of the study.  Of the 21 features, 9 
of them (SCF, LPA, GMCSF, IL7, CR, APOE, MONOAB, 
TGL, and IGHM) reported in previous studies to 
be direct and inverse relationship with insulin 
resistance and 7 of them (HDL, MCV, EOTAXIN, 
LEPTIN, MCP1, FASL1 and genus_Coprococcus) have 
a positive correlation between prediabetes and 
diabetes groups. With this study, we proposed 21 
features to become distinguishing bio-markers 

Table 2. Model performance metrics

Models Performance Accuracy Precision Recall f1-score

ANN AUC=0.89 0.89 0.89 0.85 0.87

Random Forest AUC=0.94 0.94 0.94 0.89 0.91

Figure 2. ROC curve of the two models (ANN and random 
forest) with feature selection. The models are built using 
11,585 features. AUC scores of the two models using the 
validation and test datasets
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for prediabetes. Zhao et. al. [25] detected that 
prediabetes patients had reduced secretion of 
methyl uric acid and methylxanthine, which are 
xenobiotics in tea and coffee. Zhou et.al. [7] used 
the subset of this data longitudinal to analyse the 
dynamics of microbiomes in prediabetes with more 
straightforward methods like logistic regression 
without selecting the significant features. Notably, 
using the data cross-sectional helped us increase 
the sample size, and feature selection enabled us 
to focus on substantial bio-markers. We identified 
three bio-marker genes, including SERPINF1, 
SLC2A2,  and CHL1. These three genes linked to 
diabetes have been studied in a T2D study [26,27]. 
Results suggested that SLC2A2 mutation is an 
autosomal recessive cause of neonatal diabetes 
mellitus [26]. SERPINF1 is related to obesity and 
changes leptin levels in populations at risk of T2D 
[26]. CHL1 encodes a protein, and its expression has 
indicated a decrease in T2D [27]. We can conclude 
that this study is the first to establish a separation 
between IR and IS and these five biomarkers: 
three RNA transcripts (SERPINF1, SLC2A2, and 
CHL1), and two metabolites (methyl uric acid and 
methylxanthine).

Our study has some limitations. One limitation of 
machine learning algorithms is their overfitting 
problem. To overcome this problem, we used cross-
validation for  ANN model with the Random Forest 
model, and feature selection is coupled with ANN 
for the multi-site variables. Another limitation is the 
statistical power.  In a systems biology study, it is 
essential to have a sufficient number of samples 
to get enough power. Although the sample size 
for multi-omics profiling has increased over the 
past ten years, the number of samples can still 
be lower when selecting a stringent significance 
level required to correct for multiple testing. To 
detect more bio-markers, the sample size needs 
to be increased. Another limitation is the multi-
dimensional in-person data. The studies should 
generate system biology data for individuals on 
multiple biological platforms across different 
technologies and tissues. An additional limitation 
of this study is that, while the model was validated 
using test and validation datasets derived from the 

original data, further validation on an independent 
dataset is necessary to fully assess its generalizability 
and robustness. Overall, the insulin-resistant and 
insulin-sensitive subjects differed, and multi-
omics elements enabled us to explore the early 
signs of disease development individually. Future 
studies will help to develop additional information 
on how the multi-omics elements affect disease 
development.

CONCLUSION

Multi-omics analyses of IR and IS cross-sectional 
profiling demonstrated insight into disease 
aetiology. We found 21 features characterising IR 
from IS using the artificial neural network method 
with a high AUC measure. Future work is required 
to assess the bio-markers we propose in this study 
and applies to other IR and IS cases. Overall, the 
frequency of T2D is increasing, and the problems 
it brings are also growing. With this study, we 
contributed to the literature about the assessment 
of IR and IS by measuring the 21 significant features 
using the ANN model.
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