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 A B S T R A C T  

Objective: Rhabdomyolysis is a life-threatening syndrome characterized 
by the release of myocyte components into the bloodstream and can 
be induced by pharmaceutical agents. Although quantitative structure-
activity relationship (QSAR) models are widely used for assessing 
adverse drug reactions, studies in computational toxicology focusing on 
rare and serious side effects, such as rhabdomyolysis, are still relatively 
limited. Due to this gap, this study aims to build an in silico QSAR model 
for early prediction of drugs at risk of rhabdomyolysis. 

Materials and Methods: A binary dataset was developed by gathering 187 
pharmaceutical compounds from the Drug-Induced Rhabdomyolysis 
Atlas (DIRA), and classification models were developed in the research. 
Machine learning (ML) algorithms, such as Instance-Based Learning with 
k-Nearest Neighbors (IBk), Simple Logistic (SL), and BayesNet (BN), were 
employed. Additionally, post-hoc model explanations and importance 
rankings of molecular descriptors were provided using Permutation 
Feature Importance (PFI). 

Result: The performances of the ML classifiers ranged from 82.00% to 
85.33% in the training set and from 75.67% to 81.08% in the test set. 
The highest success rate for the test set was achieved by the IBk model, 
with a rate of 81.08%. The most significant feature in the post-hoc IBk 
model explanation using PFI was highlighted as the JGI6 descriptor. The 
descriptor class with the most identifiers was the Electrotopological 
State Atom Type (E-State) Descriptors. 

Conclusion: The physicochemical properties presented in this study 
regarding rhabdomyolysis and the developed models are anticipated to 
serve as effective tools for assessing the risk of rhabdomyolysis in drug 
molecules. 
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INTRODUCTION

Rhabdomyolysis is a clinical syndrome characterized 
by the release of intracellular elements, including 
myoglobin, electrolytes, aldolase, and creatine 
kinase (CK), into the bloodstream as a result of 
acute or subacute damage to striated muscle [1,2]. 
Without prompt and aggressive interventions [3], 
fatal complications may occur, including acute 
renal failure [4], cardiac arrhythmia, intravascular 
coagulation [2], and acute muscle necrosis. 
Additionally, clinical signs such as limb weakness, 
myalgias, fever, leukocytosis, dark urine, and 
myoglobinuria may also develop [5]. The factors 
causing rhabdomyolysis are categorized into two 
main groups: hereditary and acquired. The acquired 
causes are further divided into traumatic and non-
traumatic types. The most prevalent non-traumatic 
factors include the use of pharmaceuticals. 
Approximately 150 pharmaceutical compounds 
have been identified as causes of rhabdomyolysis 
[1], including various pharmacological groups 
such as psychoactive drugs [6], selective serotonin 
reuptake inhibitors [7], statins [8], antihistamines, 
and antidepressants [9]. In this regard, the Drug-
Induced Rhabdomyolysis Atlas (DIRA), a web-
based application, was developed to ensure safe 
drug use without causing rhabdomyolysis. The 
DIRA presents a classification framework based on 
drug labeling information provided by the Food 
and Drug Administration (FDA). This framework 
classifies drugs into four classes based on their risk 
of causing rhabdomyolysis (DIR) [8]. 

Currently, quantitative structure-activity 
relationship (QSAR), a computational method 
used in drug development, serves as an essential 
tool for evaluating potential drug side effects. 
These computational models can predict possible 
toxicity profiles by analyzing the structural features 
of compounds. Based on machine learning (ML) 
algorithms, QSAR models analyze the information 
obtained from the input dataset and provide faster, 
ethical, and cost-effective results compared to 
traditional laboratory tests [10,11]. 

Despite the numerous [ITALIC]in silico[/ITALIC] 
studies in the literature concerning the toxic effects 
of pharmaceuticals, predictive models assessing 
the rhabdomyolysis risk remain relatively limited 
[12-14]. This study focused on predicting rare but 
life-threatening DIR risk using QSAR models. The 

dataset was collected from the DIRA, which contains 
187 active pharmaceutical ingredients presented by 
Wen et al. to support developing new methodologies 
for addressing the rhabdomyolysis side effect [8]. 
The present study focused on the potential of 
pharmaceuticals to induce rhabdomyolysis rather 
than assessing varying degrees of risk. For this 
purpose, drugs with varying hazard levels in DIRA 
were grouped together, whereas safe drugs with 
no rhabdomyolysis risk were classified separately. 
Thus, the drug status was evaluated as binary: 
“induces rhabdomyolysis” or “does not induce 
rhabdomyolysis”. In the current study, classification-
based QSAR models were created as binary, and the 
Permutation Feature Importance (PFI) method was 
employed to improve the model’s explainability 
and prioritize the descriptors. These models enable 
the early identification of rhabdomyolysis risk 
for a molecule with an unclear side effect profile 
during the initial phases of drug development. 
Furthermore, the prioritized descriptors guide 
which physicochemical properties need to be 
modified. Thus, optimizing molecular descriptors 
may prevent or reduce the risk of rhabdomyolysis. 
These QSAR models can enhance the management 
of side effect profiles for pharmaceuticals, resulting 
in safer and more sustainable drug development.

MATERIALS AND METHODS

Data collection, curation, and preparation
The dataset comprised 187 orally or parenterally 
administered pharmaceuticals for human use, split 
into two groups: DIR-positive (n=147) and DIR-
negative (n=40) (Table S1). All individual molecules 
were collected from the FDA-based DIRA website 
[8]. The molecular characteristics were gathered 
from two-dimensional structure data files (2D-SDFs) 
[15]. Then, the open-source PaDEL tool was used to 
generate the descriptors. The software currently 
calculates 1444 2D physicochemical properties of 
the molecules [16].

Data curation and preparation are crucial processes 
for converting raw data into a suitable format for 
modeling. The steps include cleaning, instance 
reduction, attribute selection, data transformation, 
and data partitioning [17]. This research utilized 
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Python 3.9.5 [18] and WEKA 3.9.5 [19] to prepare 
the raw data. WEKA 3.9.5 is an open source software 
package used for data mining and machine learning 
applications [19]. Raw 2D-SDFs were initially 
analyzed, and then corrupted data was removed. 
Noisy and duplicate data were removed. 

The attribute selection process finds the optimal 
descriptor set with the highest correlation with the 
specific target variable [20]. This study utilized the 
CfsSubsetEval-Best First method in WEKA 3.9.5 [19] 
to select a relevant subset of features for model 
construction.

To mitigate the impact of large values on smaller 
ones, the data are scaled using a suitable scaling 
method during the data transformation step. We 
employed the popular Min-Max scaling approach 
[16]. After scaling the data, the analysis set was 
randomly divided into training (80%, n=150) and 
test sets (20%, n=37) (Table 1).

Development and validation of the models
The three ML algorithms—Instance-Based 
Learning with k-Nearest Neighbors (IBk) [21], 
Simple Logistic (SL) [22], and BayesNet (BN) [23]—
were employed to construct binary-QSAR models 
based on the selected optimal identifiers. IBk is 
grounded in instance-based classification, relying 
on k-nearest neighbour methods for prediction. 
Instead of constructing a general model, it retains 
all training instances and classifies new inputs 
based on the majority class among the k nearest 
examples, determined by a distance metric [21]. 
SL is a classification algorithm that builds logistic 
regression models using the LogitBoost technique. 
It incrementally adds base learners to minimize 
logistic loss, resulting in a probabilistic model 
suitable for both binary and multi-class problems 
[22]. BN employs a directed acyclic graph to 
represent a probabilistic model, illustrating the 
relationships between random variables and 
their conditional dependencies. Its fundamental 
mathematical foundation is based on Bayes’ 
theorem [23]. 

The k-fold cross-validation technique is used for 
validating the training set. This technique divides 
the data set into k equal parts, using each part 
as a validation set while the remaining parts are 
used to train the model. Repeating the process k 
times measures the model’s generalization ability 
and reduces the risk of overfitting [24]. The 10-

fold cross-validation method was employed in the 
study. Additionally, an independent test set was 
used for external validation to assess the model’s 
performance.

This research employed the Topliss ratio, as 
recommended by the OECD, for validation in drug 
modeling studies. The ratio is key in assessing the 
model’s reliability [24]. For a model to be considered 
validated under this criterion, the Topliss ratio must 
exceed 5 [25].

The model’s performance was evaluated using the 
true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN) components of the 
confusion matrix. Performance metrics, including 
accuracy (ACC), specificity (SP), sensitivity (SE), 
F-score, and Matthews correlation coefficient 
(MCC), were computed using the confusion matrix 
elements. The metrics were calculated using 
equations (1) through (5), as shown below.

The Organisation for Economic Co-operation and 
Development (OECD) has established a framework 
of rules to ensure the applicability of models 
to different chemical structures. In this context, 
defining an applicability domain (AD) is essential. 
This domain sets the boundaries for the structures 

Table 1. Composition of the training and test sets

Dataset (n=187)

Training set  
(80%, n=150)

Test set  
(20%, n=37)

DIR-positive 120 27

DIR-negative 30 10
n: number of molecules; DIR: drug-induced rhabdomyolysis
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to which the model can provide accurate and 
reliable predictions. The Tanimoto index [26] and 
chemical space analysis [24] were employed to 
establish a well-defined AD in this research. The 
Tanimoto index measures chemical diversity, with 
values ranging from 0 to 1. An index closes to 0 
indicates a high degree of diversity, while one close 
to 1 indicates a high degree of similarity [26]. The 
chemical space analysis shows the distribution of 
the test and training sets in chemical space [24].

Post-Hoc explainability of the models
The OECD guidance on QSAR models encourages 
improving model explainability to increase 
reliability [24]. The PFI analysis from the model-
agnostic methods is widely employed to explain 
decisions made by black-box models. The PFI 
method quantifies the effect of each feature on the 

predictive accuracy. To understand the effect on 
the model’s performance, the values of a specific 
feature are randomly mixed, and the change in the 
accuracy is measured. This analysis enhances the 
clarity of the complex estimation processes [27].

RESULTS

Selected molecular descriptors
1444 2D descriptors were calculated by the open-
source PaDEL tool [16]. After this process, the 
best 24 2D descriptors were selected using the 
CfsSubsetEval filter+BestFirst search method. 
Consequently, we created prediction models 
utilizing the 24 optimal descriptors (Table 2) to 
enhance modeling success.

Table 2. The selected molecular descriptors

No Descriptor Description Descriptor Class

1. JGI6 Mean topological charge index of order 6 Topological Charge 
Descriptor2. GGI7 Topological charge index of order 7

3. maxsOH Maximum atom-type E-State: -OH Electrotopological State 
Atom Type (E-State) 
Descriptor

4. hmin Minimum H E-State

5. minHBint10 Minimum E-State descriptors of strength for potential Hydrogen Bonds of 
path length 10

6. minHBint5 Minimum E-State descriptors of strength for potential Hydrogen Bonds of 
path length 5

7. DELS Sum of all atoms intrinsic state differences

8. maxHCsats Maximum atom-type H E-State: H bonded to B, Si, P, Ge, As, Se, Sn or Pb

9. naaS Count of atom-type E-State: aSa

10. MATS4s Moran autocorrelation - lag 4 / weighted by I-state Autocorrelation Descriptor

11. MATS2c Moran autocorrelation - lag 2 / weighted by charges

12. ATSC8p Centered Broto-Moreau autocorrelation - lag 8 / weighted by polarizabilities

13. MIC3 Modified information content index (neighborhood symmetry of 3-order) Information Content 
Descriptor14. MIC2 Modified information content index (neighborhood symmetry of 2-order)

15. VE3_D Logarithmic coefficient sum of the last eigenvector from detour matrix Detour Matrix Descriptor

16. VE3_Dt Logarithmic coefficient sum of the last eigenvector from detour matrix

17. VE2_Dzp Average coefficient sum of the last eigenvector from Barysz matrix / weighted 
by polarizabilities

Barysz Matrix Descriptor

18. VE3_DzZ Logarithmic coefficient sum of the last eigenvector from Barysz matrix / 
weighted by atomic number

19. VC-3 Valence cluster, order 3 Chi Cluster Descriptor

20. SCH-5 Simple chain, order 5 Chi Chain Descriptor

21. nF9Ring Number of 9-membered fused rings Ring Count Descriptor

22. nAtomLAC Number of atoms in the longest aliphatic chain Longest Aliphatic Chain 
Descriptor

23. WTPT-5 Sum of path lengths starting from nitrogens Weighted Path Descriptor

24. SpMin7_Bhm Smallest absolute eigenvalue of Burden modified matrix - n 7 / weighted by 
relative mass

Burden Modified 
Eigenvalues Descriptor
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Evaluation of the model performance
In the current study, the IBk [21], SL [22], and BN [23] 
algorithms were used to construct QSAR models 
due to their highest performance. The ACC, SP, SE, 
F-score, and MCC metrics were computed for each 
algorithm. The internal and external validation 
outcomes were analyzed to assess the performance 
(Table 3). 

The classifiers’ performances were recorded with 
values ranging from 82.00% to 85.33% in the 
training set and from 75.67% to 81.08% in the test 
set. The model has been trained using the training 
dataset, and the observed performance reflects its 
capability and consistent learning from the training 
data. In this study, the 10-fold cross-validation 
technique was preferred for internal validation. 
The k-fold cross-validation assesses training 
performance by dividing the data into several 
subgroups. The approach guarantees strong 
predictive performance and versatility across 
different chemical domains for the model [28]. 
The test set is a dataset that is excluded from the 
training process, serving to evaluate the model’s 
ability to generalize. The model’s final performance 
evaluation is conducted on the test set. In the 
current model, the IBk algorithm demonstrated the 
highest success rate on the test set (81.08%), along 
with all other evaluated metrics. The values of 0.806 
and 0.811 for SP and SE, respectively, indicate the 
model’s high capability for true negative and true 
positive rates. The results from the internal and 
external validation processes demonstrated the 
IBk model’s high generalization capability and 
reliability. Specifically, the ACC rates for the training 
and test sets indicated that the IBk model achieved 
consistent success, with rates of 84.00% and 81.08%, 
respectively. This consistency enhances the model’s 
ability to prevent overfitting and adapt to new real-
world data. The findings indicate that the IBk model 

effectively distinguishes between DIR-positive and 
DIR-negative compounds, demonstrating its robust 
predictive capabilities.

Calculating the Topliss ratio is crucial in validating 
the QSAR model [24]. The proposed models met 
the validity criteria, achieving a Topliss ratio of 7.8, 
based on 187 compounds and 24 descriptors. Based 
on this result, overfitting appears to be prevented.

We performed analyses of the Tanimoto similarity 
index [26] and chemical space distribution [24] 
to establish a reliable AD area for ensuring model 
robustness. The average Tanimoto scores for 
the training and test datasets were recorded as 
0.3739 and 0.4070, respectively. These scores 
indicate chemical diversity and AD compatibility 
within the datasets. Molecular weight (MW) and 
Ghose-Crippen LogKow (ALogP) values were 
utilized to analyze the distribution of chemical 
space (Figure 1). The MW values of the molecules 
ranged from 131.0946 to 2637.0983 g/mol, while 
their ALogP values were from -26.7021 to 3.8871. 
This visualization confirmed that the test set 
components were adequately included in the 
chemical domain of the training set.

Table 3. Performance measurements of the classifiers

IBk SL BN

Training Test Training Test Training Test

ACC % 84.00 81.08 85.33 78.38 82.00 75.67

SP 0.833 0.806 0.844 0.773 0.855 0.732

SE 0.840 0.811 0.853 0.784 0.820 0.757

F-score 0.936 0.808 0.847 0.776 0.831 0.727

MCC 0.476 0.506 0.509 0.420 0.531 0.293
IBk: Instance-Based Learning with k-Nearest Neighbors; SL: Simple logistic; BN: BayesNet; ACC: Accuracy; SP: Specificity; SE: Sensitivity; MCC: 
Matthews correlation coefficient.

Figure 1. Distribution analysis in chemical space 
(n: number of molecules; MW: Molecular Weight; AlogP: Ghose-
Crippen LogKow)
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These techniques enhanced the current model’s 
validity and clarified AD’s boundaries. The IBk model 
shows promise in producing robust and reliable 
predictions across various chemical domains. These 
findings support the selection of the IBk algorithm 
to ensure inter-class consistency.

Explanation of the top-performing model
The top-performing IBk model was explained using 
PFI analysis (Figure 2). The graph’s vertical axis (Y-axis) 
lists the features utilized by the model, arranged 
from bottom to top according to increasing relative 
importance—features positioned higher have 
a greater effect on the model’s predictions. The 
horizontal axis (X-axis) indicates the importance 
score attributed to each feature within the model. 
This score is computed by assessing the decrease 
in model accuracy when the values of a particular 
feature are randomly permuted. Variables with 
higher values along the X-axis strongly influence 
the model’s decisions. Variables near zero minimally 
affect model predictions. This analysis highlights 
the features exerting the greatest influence on 
predictions [27].

The most significant descriptor for the IBk model 
is JGI6, followed by maxsOH, MATS4s, and 
nAtomLAC. Next, MATS2c, MIC3, and MIC2 show 
equal influence. After these, VC-3 and SpMin7_
Bhm yield similar effects. Following this are VE3_D 
and maxHCsats, which also exhibit comparable 
impacts. Then, WTPT-5 and SCH-5 rank similarly in 

their effects. Next is hmin, followed by minHBint10. 
Additionally, minHBint5, DELS, and VE2_Dzp 
share equal importance, trailing behind nF9Ring. 
Following these are naaS, VE3_Dt, and VE3_DzZ, 
which indicate equal impact. Lastly, GGI7 and 
ATSC8p are noted as having a negligible effect.

DISCUSSION

The majority of the descriptors in the model 
belong to the Electrotopological State Atom Type 
(E-State) Feature class (maxsOH, maxHCsats, hmin, 
minHBint10, minHBint5, DELS, and naaS). The E-state 
index encodes both electronic and topological 
information at the atomic and sub-molecular levels 
[29]. This class plays a crucial role in identifying 
functional regions of molecules with potential 
pharmacophore or toxicophore properties. The 
capability to evaluate electronic structures and 
topological properties via a comprehensive 
approach has established E-state indices as a 
crucial instrument for QSAR analyses [30]. Our 
model’s descriptors mainly consist of E-state indices 
consistent with the chemoinformatics literature. 
This model contains three descriptors from the 
Autocorrelation Descriptor class [31]: MATS4s, 
MATS2c, ATSC8p. Some drugs known to cause 
rhabdomyolysis have been reported to trigger this 
condition through direct toxicity to skeletal muscle, 
by increasing intracellular free ionized calcium 
levels, and by decreasing serum coenzyme Q levels 

Figure 2. The contribution of molecular descriptors to the top-performing model
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[9]. In a QSAR model for predicting the activity 
of 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) 
reductase inhibitors, various descriptors from the 
E-State, Autocorrelation, Topological Charge, Detour 
Matrix, and Barysz Matrix Descriptor classes were 
utilized, similar to our study. These characteristics 
significantly impacted the model’s estimating 
capacity [32]. Additionally, a study aimed at 
identifying newly synthesized HMG-CoA reductase 
inhibitors through [ITALIC]in silico[/ITALIC] 
methods employed chemical similarity analysis 
and QSAR model integration, with Autocorrelation 
descriptors serving as a significant component [33]. 
Our QSAR model also included descriptors from 
Topological Charge (JGI6 and GGI7), Information 
Content (MIC3 and MIC2), Detour Matrix (VE3_D 
and VE3_Dt), and Barysz Matrix (VE2_Dzp and 
VE3_DzZ). Given that rhabdomyolysis is a serious 
side effect of statins, using these descriptor classes 
in our study is significant. In the model of statin 
activity created by Ancuceanu et al. [32], the JGI5 
descriptor from the Topological Charge index was 
used. Higher HMG-CoA reductase inhibitory activity 
was linked to higher JGI5 levels. The sixth-order 
derivative, JGI6, was the strongest descriptor in the 
current model. JGI6 tends to rise as the molecular 
structure becomes more complicated, with more 
ring systems, branching, and more heteroatoms 
[32]. Based on the chemoinformatic literature and 
current findings, it can be suggested that a higher 
JGI6 value may increase the risk of drug-induced 
rhabdomyolysis.

The current model includes one descriptor for 
each class in the Chi Cluster Descriptor (VC-3), 
Chi Chain Descriptor (SCH-5), Longest Aliphatic 
Chain Descriptor (nAtomLAC), Burden Modified 
Eigenvalues Descriptor (SpMin7_Bhm), Weighted 
Path Descriptor (WTPT-5), and Ring Count 
Descriptor (nF9Ring). Rajathei et al. developed 
a 2D-QSAR model by correlating the structural 
features of a series of atorvastatin analogs 
identified as HMG-CoA reductase inhibitors with 
their biological activities [33]. One of the significant 
descriptors in the HMG-CoA reductase inhibitors 
model was SCH-7, a Chi Chain Descriptor family 
member. The SCH-x descriptors of the Kier and Hall 
molecular connectivity indices [34] are the x-th 
degree chain (or ring) type versions, describing the 
x-th degree of connectivity of non-hydrogen atoms 
in molecules. According to a study by Rajathei et 
al., the inhibitory action of SCH-7 may be attributed 

to its higher degree of connectivity, resulting from 
its increasing positive value [33]. Similarly, the 5th-
level derivative of this descriptor, SCH-5, emerged 
as a significant predictor in the current DIR model. 
The current model suggests that the susceptibility 
of medications to rhabdomyolysis may increase 
as the SCH-5 value increases. Another significant 
descriptor highlighted in the aforementioned study 
is the VE3_Dt descriptor derived from the Detour 
Matrix index [33], which is also included in our 
model. Furthermore, the present model employed 
VE3_D, while the HMG-CoA reductase inhibitors 
model used VE1_D and VE2_D [33].

The PIF analysis revealed that GGI7 and ATSC8p 
have the lowest impact on the current model 
prediction. After removing these features and 
rebuilding the model, a slight decrease in 
performance was observed. This implies that 
these features may interact with other variables 
as they are not entirely independent. In the 
presence of interrelated variables, assessing 
feature combinations yields more reliable insights 
than analyzing individual predictors [35]. The 
descriptors presented in this study are suggested 
as potential toxicophore structures responsible for 
a molecule’s rhabdomyolysis risk. Before modifying 
drugs at the molecular level to reduce the risk of 
rhabdomyolysis, an assessment should consider 
the descriptors supported by other studies and the 
importance ranking determined by the PIF analysis 
(Figure 2) to ensure the decision-making process is 
well-founded.

Prior molecular modifications aimed at minimizing 
DIR, a comprehensive assessment should be 
conducted based on the importance hierarchy 
determined through PIF analysis (Figure 2) and 
descriptors validated by previous studies to ensure 
a robust and evidence-based decision-making 
framework.

Strengths and limitations of the model
DIR is a potentially fatal idiosyncratic adverse 
drug reaction. Diagnosing DIR in clinics can often 
be challenging due to the limited availability of 
methods. Current methods, particularly monitoring 
CK levels and testing for myoglobinuria in urine, are 
inadequate for the early and definitive detection of 
DIR [36]. Various commonly prescribed medications, 
such as antidepressants (e.g., promazine, 
trifluoperazine), lipid-lowering medications 
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(e.g., clofibrate, lovastatin), and antihistamines 
(e.g., doxylamine, diphenhydramine), have the 
potential to trigger rhabdomyolysis. As more 
newly synthesized drugs are introduced into 
clinical use, the risk of rhabdomyolysis associated 
with these drugs is expected to increase [9]. Thus, 
accurately identifying the DIR risk before marketing 
is crucial. Utilizing [ITALIC]in silico[/ITALIC] analysis 
is recommended as the quickest and most 
economical approach in the initial phase [23]. 

The limited number of DIR cases and the inclusion of 
drugs without conclusive safety evidence regarding 
rhabdomyolysis risk in the ‘safe’ group limit the 
accuracy and reliability of several DIR models 
available in the literature. To address this gap in 
the literature, a 2D-QSAR model was developed in 
this study to predict the pharmaceutical-related 
risk of rhabdomyolysis using DIRA data. In this 
context, models were developed utilizing the IBk, 
SL, and BN algorithms with data categorized as DIR-
positive and DIR-negative. The IBk model, noted for 
its strong predictive performance, was analyzed in 
detail. The binary IBk model achieved an accuracy 
of 81.08% on the test set. In the multiclass DIR QSAR 
model developed by Zhou et al., a success rate of 
73.00% was recorded using the Random Forest 
(RF) algorithm. Although assessing various levels of 
rhabdomyolysis risk in the RF model is considered 
an advantage, it requires improvements to increase 
its success rate [13]. 

In the current study, collecting data from a single 
source increased homogeneity and positively 
contributed to data consistency and model accuracy. 
However, depending on a single source dataset 
can present challenges in creating comprehensive 
datasets. Conversely, the accuracy of both the 
positive and negative groups in the present dataset 
is supported by the literature. In this respect, 
compared to other models that accept medications 
without rhabdomyolysis data as negative, it offers 
a more reliable dataset. For example, Cui et al. 
developed a binary DIR prediction model using 163 
drug molecules associated with rhabdomyolysis 
risk and 1341 drug molecules with no reported 
rhabdomyolysis risk. In the study, the RF algorithm 
achieved the highest success rate of 79.28% [12]. 
Besides, the binary rhabdomyolysis QSAR model 
developed using the Support Vector Machine 
(SVM) algorithm, based on a dataset of similar size 
to the current study, achieves an accuracy rate of 

84.50%. Although the study demonstrated a higher 
performance than the 81.08% ACC rate obtained in 
our study, a direct comparison is not appropriate 
due to dataset differences. The SVM model’s dataset 
includes various ingredients, pharmaceuticals, and 
chemicals [9]. The diversity in the dataset is a crucial 
factor directly affecting the model’s generalization 
capacity. Concentrating exclusively on 
pharmaceutical compounds has both advantages 
and limitations. Utilizing only pharmaceutical-
grade ingredients ensured consistency in the 
dataset, enhancing the model’s sensitivity to a 
specific chemical group and contributing to safer 
drug development processes. Additionally, the 
presented model explanations provide new insights 
into minimizing or preventing potential drug side 
effects. In this context, the present model excludes 
non-pharmaceutical substances. Furthermore, as 
in traditional QSAR modeling, salts and inorganic 
compounds have been excluded from the scope 
of analysis. Restructuring the algorithms used in 
the model requires high expertise; however, the 
availability of the datasets simplifies the process of 
creating the model.

In conclusion, the QSAR models developed in the 
present study can support DIR assessment during 
drug development and the early stages of preclinical 
research. Integrating QSAR-based approaches 
into drug safety management offers an ethically 
sustainable alternative, enhancing both economic 
efficiency and time effectiveness. Alongside the 
strong predictive performance demonstrated by 
the DIR model, this study aims to contribute to 
safer drug development by providing structural 
insights. The study anticipates that the presented 
physicochemical properties and the developed DIR 
models will serve as significant guides and effective 
analytical tools for assessing DIR-related risks.
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