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Contribution of skeletal muscle defects  
in spinal muscular atrophy

 A B S T R A C T  
Spinal muscular atrophy (SMA) is an autosomal recessively inherited motor 
neuron disease that causes alpha motor neuron degeneration in the spinal cord, 
symmetrical muscle weakness, and atrophy. SMA is caused by mutations in the 
survival of motor neuron 1 (SMN1) gene, which results in a reduced amount of 
survival motor neuron (SMN) protein synthesis. Although there have been many 
studies investigating SMA pathogenesis, the mechanism by which the reduced 
SMN protein levels cause motor neuron degeneration and muscle atrophy is un-
clear. Generally, muscle weakness is considered a secondary outcome of motor 
neuron degeneration in SMA. However, recent studies have shown that intrin-
sic skeletal muscle defects contribute to SMA pathogenesis and targeting skele-
tal muscle might be beneficial as a potential therapy approach. This paper aims 
to review the recent findings on the role of skeletal muscle in SMA pathogenesis..
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Introduction

Spinal muscular atrophy (SMA) is an autosomal 
recessively inherited motor neuron disease that 

causes alpha motor neuron degeneration in the spi-
nal cord and muscle atrophy. SMA is one of the lead-
ing genetic disorders causing infant death with an 
incidence of 1 in 6000–10,000 live births and a carri-
er frequency of 1 in 50 [1]. Ranging from very severe 
to mild, based on the age of onset and the achieved 
motor function, 4 clinical phenotypes (Types I–IV) 
are defined in SMA [2].

SMA is caused by mutations in the surviv-
al of motor neuron 1 (SMN1) gene [3–6]. SMN1 
encodes survival motor neuron (SMN) protein 
and its absence results in embryonic lethality 
[7]. Human SMN1 has a homologue copy called 
SMN2, formed as a result of an intrachromosomal 
duplication, which also encodes SMN protein [8]. 
The SMN1 and SMN2 gene sequences differ from 
each other by only 5 nucleotides. The C840T tran-
sition in the exon 7 of SMN2 causes an important 
functional difference. As a result of this transition, 
SMN2 produces exon 7-skipped transcripts, which 
results in truncated and unstable SMN protein 
[9]. Only a small amount (10%) of full-length SMN 
protein is synthesized due to alternative splicing. 

However, depending on the number of SMN2 gene 
copies, the functional protein level is increased 
and this correlates with a milder clinical pheno-
type [10–13].

SMN is an ubiquitous 38-kDa protein expressed 
in a developmental and tissue-specific manner 
[14,15]. It is localized in the cytoplasm and nucleus 
as a SMN complex, and plays a role in small nuclear 
ribonucleoprotein (snRNP) biogenesis, mRNA splic-
ing, and RNA transport [16–21]. Since SMN has 
various interaction partners, it is hypothesized that 
SMN might have additional functions aside from 
its housekeeping roles. As reported by Boyer et al., 
SMN plays differing roles in motor neurons, neu-
romuscular junctions, and skeletal muscle, which 
are all components of the motor unit (Figure 1) [22]. 
In motor neurons, SMN plays a role in neurite out-
growth, neuronal differentiation, axonal pathfind-
ing, and the regulation of actin dynamics. Several 
defects have been reported related to these roles in 
the case of low SMN levels [22–24]. A decrease in 
SMN levels is associated with abnormal endplate 
morphology, endplate denervation, neurofilament 
accumulation, and perturbed malfunction at the 
neuromuscular junctions [22].
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Figure 2. Representative images of the sarcomere struc-
ture and SMN localization in purified mouse myofibrils 
(adapted from [29] with the permission of the author). a. 
Sarcomeric localization of SMN in wild-type myofibrils 
revealed by immunoflorescent staining via anti-SMN an-
tibody. b. Altered Z-disc spacing (arrowheads) of myofi-
brils in the case of SMN reduction revealed by immuno-
florescent staining via alpha-actinin antibody.
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Although there are many studies investigat-
ing SMA pathogenesis, the relationship between 
SMN protein levels and motor neuron degenera-
tion or muscle atrophy is unclear. Muscle weakness 
has been considered a secondary outcome of motor 
neuron degeneration in motor neuron diseases; thus, 
most studies have delved into motor neuron pathol-
ogy. However, as 2 important components of the 
motor unit, motor neurons and muscle cells are de-
pendent on each other in development and contrac-
tile function [25,26]. It is difficult to independent-
ly study motor neuron and skeletal muscle involve-
ment in the disease pathogenesis without the use of 
cell culture and animal models [26].

Recent studies have shown that SMN may have 
muscle-specific functions and intrinsic muscle de-
fects may contribute to SMA pathogenesis [26–37]. 
It has also been reported that muscle weakness was 
observed in the early phase of the disease and could 
be the result of a delay in muscle development [38–
46]. It is therefore crucial to understand the skele-
tal muscle pathology of SMA aside from than that of 
motor neurons. Moreover, the regenerative capacity 
of the muscle is an important therapeutic target for 
SMA and would eliminate the necessity for the de-
velopment of a blood-brain-barrier permeable drug 
[40]. This paper aims to review the recent findings 
on the role of skeletal muscle in SMA pathogenesis.

Muscle-specific Functions of SMN
Recent studies have shown that SMN may have mus-
cle-specific functions in addition to its housekeeping 

functions. SMN was identified as a sarcomeric 
Z-disc protein (Figure 2a) in both Drosophila and 
mice [28]. Further studies on SMA performed in an-
imal and cell culture models showed that SMN colo-
calizes with Z-disc proteins alpha-actinin and alpha 
B crystallin in skeletal and cardiac muscle, and its 
decrease causes sarcomeric defects such as altered 
Z-disc spacing (Figure 2b) [28–30]. The absence of 
snRNPs in Z-discs suggests that SMN could con-
tribute to the maintenance of Z-disc homeostasis, 
acting as a Z-disc signaling factor and ensuring the 
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Figure 1. The figurative image of the motor unit.
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local translation of proteins by mRNA transport. 
Additionally, analysis of the interaction partners 
of SMN in different developmental stages of myo-
blast cell lines showed that SMN interacting pro-
teins were variable during myogenesis. This implies 
that in addition to being a structural muscle protein, 
SMN has unique functions in muscle growth and 
differentiation [26,31].

Intrinsic Muscle Defects in SMA
Low levels of SMN protein expression is accompa-
nied by skeletal muscle defects such as reduced myo-
blast proliferation rate, myotube fusion defects, and 
consequent abnormal myotube formation [27,32]. 
The following reports indicate an intrinsic skele-
tal muscle pathology in SMA and a requirement for 
SMN to maintain the motor neuron-muscle con-
nection: a) the presence of skeletal muscle defects 
in severe SMA mice at the presymptomatic stage, b) 
denervated muscle in mice displayed a significantly 
different proteomic profile compared to SMA mice, 
c) motor neuron degeneration occurred when the 
skeletal muscle cells of SMA patients were cocul-
tured with healthy motor neurons [33–37,39]. When 
considered together, these studies suggest that the 
skeletal muscle pathology in SMA might be intrin-
sic and could arise independently of motor neu-
ron degeneration.

Developmental Delay in Skeletal Muscle in 
SMA
Skeletal muscle defects are observed earlier than spi-
nal cord defects during SMA pathogenesis [39,40]. 
In mouse models of SMA, the early defects are asso-
ciated with a failure in muscle growth and a delay in 

the maturation of muscle proteins involved in mus-
cle contraction [39–42]. In accordance with this, 
small and disorganized myotubes and myotube-like 
fibers were detected in the prenatal and postnatal 
stages of SMA patients, respectively [38,43].

Satellite cells were investigated for their func-
tion in SMA, since early neonatal muscle growth is 
supported by satellite cell activity. Although there 
was no decrease in the number of satellite cells per 
myofiber, and the proliferation rate was not affected 
by low levels of SMN, in a severe SMA mouse mod-
el, satellite cells failed to form multinucleated myo-
tubes. This indicates a need for SMN function for 
normal satellite cell differentiation [44].

The expression of structural and functional mus-
cle proteins takes place during early postnatal skel-
etal muscle development. The development process 
is regulated by myogenic regulatory factors (MRF) 
such as myoblast determination 1 (MyoD), myogen-
in, muscle-specific regulatory factor 4 (Mrf4), and 
myosin heavy chain (MHC). (Figure 3) [45]. Under 
normal circumstances, MRFs have a high expres-
sion profile at the beginning of the early postnatal 
stage and show a rapid decrease over time. The im-
pairment in the myogenic program may cause a de-
lay in skeletal muscle development independent-
ly from motor neuron loss [39,45]. Accordingly, in 
SMA mice, myoblast fusion defects and cytoskele-
tal abnormalities are caused by the lower expression 
of the MRFs at the early presymptomatic stage, fol-
lowed by a delayed increased expression at the symp-
tomatic stage. SMN potentially corrects the men-
tioned defects [46]. Additionally, adult isoforms of 
other functional muscle proteins must be expressed 
subsequent to the expression of embryonic isoforms 

Figure 3. Figurative image of muscle development. (MyoD: myoblast determination 1, Mrf4: the muscle-spe-
cific regulatory factor 4, and MHC: myosin heavy chain).
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Figure 4. IGF1 and myostatin signaling pathways.
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for regular postnatal development [45]. A failure 
in this shift from embryonic to adult isoforms can 
cause a delay in skeletal muscle maturation in SMA. 
The expression of MHC and acetylcholine receptors 
are important for muscle fiber typing and synapse 
formation, respectively, are well known examples in 
SMA [32,41,42,47–49].

In conclusion, these studies indicate a delay in 
skeletal muscle development that contributes to 
SMA pathogenesis. Hence, skeletal muscle could be 
a target for early treatment in SMA.

Targeting Skeletal Muscle in SMA
Skeletal muscle is a dynamic tissue that can change 
size as a response to environmental and molecular 
signaling factors [50,51]. Insulin-like growth factor 1 
(IGF1) and myostatin are the main signaling path-
ways (Figure 4) that regulate skeletal muscle size. 
These pathways were investigated in SMA to under-
stand their effects on skeletal muscle pathology.

As a member of the transforming growth fac-
tor beta super-family, myostatin has a skeletal mus-
cle-specific expression, which results in negative reg-
ulation of the skeletal muscle mass. Myostatin stim-
ulates the signaling cascades related to skeletal mus-
cle atrophy by binding to the activin receptor IIB 
(Figure 4) [52]. Myostatin knockout mouse models or 

loss of function mutations in humans lead to mus-
cle fiber hypertrophy. This supports the idea that 
the modulation of myostatin might promote mus-
cle growth [53–55]. In this sense, research groups 
have investigated the effects of a potent myostatin 
inhibitor, follistatin, in SMA [56–58]. Although the 
results are controversial, the administration of re-
combinant follistatin in SMA mice showed a posi-
tive effect on muscle growth, body weight, and me-
dian survival [58].

Contrary to myostatin, IGF1 is known to be a 
positive regulator of skeletal muscle size. IGF1 in-
duces satellite cell proliferation, myoblast differenti-
ation, and myotube formation, not only during mus-
cle development but also during muscle regenera-
tion after damage or denervation [59,60]. Muscle-
specific over-expression of IGF1 increases muscle 
mass and causes hypertrophy, and IGF1-null an-
imal models show growth deficiencies with a re-
duced muscle mass [60–65]. Studies on SMA mouse 
models report low IGF1 levels in the blood; howev-
er, currently, there is no research on SMA patients 
[66,67]. It was also shown that in gene therapy ap-
proaches, the peripheral administration or mus-
cle-specific overexpression of IGF1 increased mus-
cle mass, body weight, and survival in SMA models 
[59,67,68]. The majority of studies on SMA models 
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have been focused on IGF1, since rodents have no 
postnatal expression of IGF2. However, IGF2 has a 
postnatal expression in humans and plays a role in 
skeletal muscle differentiation [69–71]. Thus, IGF2 
functions, as well as those of IGF1, should be em-
phasized in SMA patients.

IGF1 positively affects muscle growth by induc-
ing the PI3K/Akt/mTOR pathway. while myosta-
tin induces muscle atrophy by regulating Akt, Foxo, 
MuRF1 and MAFbx expressions (Figure 4) [50,72]. 
Moreover, myostatin may act as an antagonist to 
IGF1 over the PI3K/Akt/mTOR pathway [73]. Hence, 
both myostatin- and IGF1-related signaling cascades 
might be probable candidates of future investigation 
in SMA.

Conclusion
SMA research has previously been focused on mo-
tor neuron degeneration, since it was considered the 
primary cause of the disease [74–77]. Hence, muscle 

weakness and atrophy in SMA patients were consid-
ered as a secondary outcome of alpha motor neuron 
degeneration in the spinal cord. However, the stud-
ies presented here collectively indicate that skele-
tal muscle defects are prominent contributors to 
SMA pathogenesis and could arise independently 
from motor neuron degeneration. Therefore, skele-
tal muscle defects in SMA pathology should not be 
disregarded and the molecules/signaling pathways 
could contribute to the therapeutic repair of mus-
cle defects in SMA. The intrinsic regenerative ca-
pacity of skeletal muscle and the fact that muscle 
tissue is more easily accessible than motor neurons 
draws attention to muscle defects as promising ther-
apy targets.
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